Introduction: Vector search is the foundation of modern RAG systems, but naive implementations often deliver poor results. Optimizing vector search requires understanding embedding models, index types, query strategies, and reranking techniques. The difference between a basic similarity search and a well-tuned retrieval pipeline can be dramatic—both in relevance and latency. This guide covers practical vector […]
Read more →LLM Batch Processing: Scaling AI Workloads from Hundreds to Millions
Introduction: Processing thousands or millions of items through LLMs requires different patterns than single-request applications. Naive sequential processing is too slow, while uncontrolled parallelism hits rate limits and wastes money on retries. This guide covers production batch processing patterns: chunking strategies, parallel execution with rate limiting, progress tracking, checkpoint/resume for long jobs, cost estimation, and […]
Read more →The Future of Work: How AI and Automation Are Reshaping Careers
After two decades of architecting enterprise systems and leading digital transformation initiatives across financial services, healthcare, and technology sectors, I’ve witnessed firsthand how AI and automation are fundamentally reshaping the nature of work. This isn’t merely about replacing tasks—it’s about reimagining entire value chains, creating new categories of roles, and demanding a fundamental shift in […]
Read more →Building Production AI Applications with .NET 8 and C# 12
When .NET 8 and C# 12 were released, I was skeptical. After 15 years building enterprise applications, I’d seen framework updates come and go. But this release changed everything for AI development. Let me show you how to build production AI applications with .NET 8 and C# 12—using actual C# code, not Python wrappers. Figure […]
Read more →LLM Output Formatting: JSON Mode, Pydantic Parsing, and Template-Based Outputs
Introduction: LLM outputs are inherently unstructured text, but applications need structured data—JSON objects, typed responses, specific formats. Getting reliable structured output requires careful prompt engineering, output parsing, validation, and error recovery. This guide covers practical output formatting techniques: JSON mode and structured outputs, Pydantic-based parsing, format enforcement with retries, template-based formatting, and strategies for handling […]
Read more →LLM Chain Composition: Building Complex AI Workflows with Sequential, Parallel, and Conditional Patterns
Introduction: Complex LLM applications rarely consist of a single prompt—they chain multiple steps together, each building on the previous output. Chain composition enables sophisticated workflows: retrieval-augmented generation, multi-step reasoning, iterative refinement, and conditional branching. Understanding how to compose chains effectively is essential for building production LLM systems. This guide covers practical chain patterns: sequential chains, […]
Read more →