Token Optimization Techniques: Maximizing Value from Every LLM Token

Introduction: Tokens are the currency of LLM applications—every token costs money and consumes context window space. Efficient token usage directly impacts both cost and capability. This guide covers practical token optimization techniques: accurate token counting across different models, content compression strategies that preserve meaning, budget management for staying within limits, and prompt engineering patterns that […]

Read more →

LLM Observability Patterns: Tracing, Metrics, and Logging for Production AI Systems

Introduction: LLM applications are notoriously difficult to debug and monitor. Unlike traditional software where inputs and outputs are deterministic, LLMs produce variable outputs that can fail in subtle ways. Observability—the ability to understand system behavior from external outputs—is essential for production LLM systems. This guide covers practical observability patterns: distributed tracing for complex LLM chains, […]

Read more →

Prompt Versioning and A/B Testing: Engineering Discipline for Prompt Management

Introduction: Prompts are code—they define your application’s behavior and should be managed with the same rigor as source code. Yet many teams treat prompts as ad-hoc strings scattered throughout their codebase, making it impossible to track changes, compare versions, or systematically improve performance. This guide covers practical prompt management: version control systems for prompts, A/B […]

Read more →

Knowledge Graph Integration: Structured Reasoning for LLM Applications

Introduction: Vector search finds semantically similar content, but it misses the structured relationships that make knowledge truly useful. Knowledge graphs capture entities and their relationships explicitly—who works where, what depends on what, how concepts connect. Combining knowledge graphs with LLMs creates systems that can reason over structured relationships while generating natural language responses. This guide […]

Read more →

LLM Fine-Tuning Strategies: From Data Preparation to Production Deployment

Introduction: Fine-tuning transforms general-purpose language models into specialized tools for your domain. While prompting works for many tasks, fine-tuning delivers consistent behavior, lower latency, and reduced token costs when you need the model to reliably follow specific formats, use domain terminology, or exhibit particular reasoning patterns. This guide covers practical fine-tuning strategies: preparing high-quality training […]

Read more →

Retrieval Reranking Techniques: From Cross-Encoders to LLM-Based Scoring

Introduction: Initial retrieval casts a wide net—vector search or keyword matching returns candidates that might be relevant. Reranking narrows the focus, using more expensive but accurate models to score each candidate against the query. Cross-encoders process query-document pairs together, capturing fine-grained semantic relationships that bi-encoders miss. This two-stage approach balances efficiency with accuracy: fast retrieval […]

Read more →