Introduction: Context windows are the most valuable resource in LLM applications. Every token matters—waste space on irrelevant content and you lose room for information that could improve responses. Effective context window optimization means fitting the right information in the right amount of space. This guide covers practical strategies: prioritizing content by relevance, chunking documents intelligently,… Continue reading
Category: Artificial Intelligence(AI)
Prompt Chaining Patterns: Breaking Complex Tasks into Manageable Steps
Introduction: Complex tasks often exceed what a single LLM call can handle well. Breaking problems into smaller steps—where each step’s output feeds into the next—produces better results than trying to do everything at once. Prompt chaining decomposes complex workflows into sequential LLM calls, each focused on a specific subtask. This guide covers practical chaining patterns:… Continue reading
LLM Error Handling: Building Resilient AI Applications
Introduction: LLM APIs fail. Rate limits get hit, servers time out, responses get truncated, and models occasionally return garbage. Production applications need robust error handling that gracefully recovers from failures without losing user context or corrupting state. This guide covers practical error handling strategies: detecting and classifying different error types, implementing retry logic with exponential… Continue reading
Streaming Response Patterns: Building Responsive LLM Applications
Introduction: Waiting for complete LLM responses creates poor user experiences. Users stare at loading spinners while models generate hundreds of tokens. Streaming delivers tokens as they’re generated, showing users immediate progress and reducing perceived latency dramatically. But streaming introduces complexity: you need to handle partial responses, buffer tokens for processing, manage connection failures mid-stream, and… Continue reading
LLM Security Best Practices: Protecting AI Applications from Attacks
Introduction: LLM applications face unique security challenges. Prompt injection attacks can hijack model behavior, sensitive data can leak through responses, and malicious outputs can harm users. Traditional security measures don’t fully address these risks—you need LLM-specific defenses. This guide covers practical security strategies: validating and sanitizing inputs, detecting prompt injection attempts, filtering sensitive information from… Continue reading
Embedding Model Selection: Choosing the Right Model for Your AI Application
Introduction: Choosing the right embedding model determines the quality of your semantic search, RAG system, or clustering application. Different models excel at different tasks—some optimize for retrieval accuracy, others for speed, and others for specific domains. The wrong choice means poor results regardless of how well you build everything else. This guide covers practical embedding… Continue reading
Prompt Template Management: Engineering Discipline for LLM Prompts
Introduction: Prompts are the interface between your application and LLMs. As applications grow, managing prompts becomes challenging—they’re scattered across code, hard to version, and difficult to test. A prompt template system brings order to this chaos. It separates prompt logic from application code, enables versioning and A/B testing, and makes prompts reusable across different contexts.… Continue reading
LLM Cost Tracking: Visibility and Control for AI Spending
Introduction: LLM costs can spiral out of control without proper tracking. A single runaway feature or inefficient prompt can burn through your budget in hours. Understanding where your tokens go—by user, feature, model, and time—is essential for cost optimization and capacity planning. This guide covers practical cost tracking: metering token usage at the request level,… Continue reading
Function Calling Patterns: Enabling LLMs to Take Real Actions
Introduction: Function calling transforms LLMs from text generators into action-taking agents. Instead of just describing what to do, the model can invoke actual functions with structured arguments. This enables powerful integrations: querying databases, calling APIs, executing code, and orchestrating complex workflows. But function calling requires careful design—poorly defined functions confuse the model, missing validation causes… Continue reading
RAG Query Optimization: Transforming User Questions into Effective Retrieval
Introduction: RAG quality depends heavily on retrieval quality, and retrieval quality depends on query quality. Users often ask vague questions, use different terminology than your documents, or need information that spans multiple topics. Query optimization bridges this gap—transforming user queries into forms that retrieve the most relevant documents. This guide covers practical query optimization techniques:… Continue reading