Inside Ireland’s Healthcare IT: HSE’s Digital Transformation Journey

Executive Summary Ireland’s Health Service Executive (HSE) is undertaking one of Europe’s most ambitious healthcare IT transformation programs. From rolling out the Individual Health Identifier (IHI) to deploying a national Electronic Health Record system, the HSE’s eHealth Ireland strategy is modernizing how 5 million Irish citizens access healthcare services. 🏥 HEALTHCARE INTEROPERABILITY SERIES This article […]

Read more →

GraphQL for AI Services: Flexible Querying for LLM Applications

GraphQL provides flexible querying for LLM applications. After implementing GraphQL for 15+ AI services, I’ve learned what works. Here’s the complete guide to using GraphQL for AI services. Figure 1: GraphQL Architecture for AI Services Why GraphQL for AI Services GraphQL offers significant advantages for AI services: Flexible queries: Clients request exactly what they need […]

Read more →

CrewAI: Building Collaborative Multi-Agent Systems with Role-Playing AI Agents

Introduction: CrewAI has emerged as one of the most intuitive frameworks for building multi-agent AI systems. Unlike traditional agent frameworks that focus on single-agent loops, CrewAI introduces a role-playing paradigm where specialized AI agents collaborate as a “crew” to accomplish complex tasks. Released in late 2023 and rapidly gaining adoption throughout 2024, CrewAI simplifies the […]

Read more →

Prompt Injection Defense: A Complete Guide to Sanitization, Detection, and Output Validation

Prompt injection represents one of the most critical security vulnerabilities in LLM applications. As organizations deploy AI systems that process user inputs, understanding and defending against these attacks becomes essential for building secure, production-ready applications. Understanding Prompt Injection Attacks Prompt injection occurs when an attacker crafts malicious input that manipulates the LLM into ignoring its […]

Read more →

LLM Monitoring and Alerting: Building Observability for Production AI Systems

Introduction: LLM monitoring is essential for maintaining reliable, cost-effective AI applications in production. Unlike traditional software where errors are obvious, LLM failures can be subtle—degraded output quality, increased hallucinations, or slowly rising costs that go unnoticed until the monthly bill arrives. Effective monitoring tracks latency, token usage, error rates, output quality, and cost metrics in […]

Read more →

Structured Output from LLMs: JSON Mode, Function Calling, and Pydantic Patterns (Part 1 of 2)

Introduction: Getting reliable, structured data from LLMs is one of the most practical challenges in building AI applications. Whether you’re extracting entities from text, generating API parameters, or building data pipelines, you need JSON that actually parses and validates against your schema. This guide covers the evolution of structured output techniques—from prompt engineering hacks to […]

Read more →