Introduction: Memory is what transforms a stateless LLM into a persistent, context-aware agent. Without memory, every interaction starts from scratch—the agent forgets previous conversations, learned preferences, and accumulated knowledge. But implementing memory for agents is more complex than simply storing chat history. You need short-term memory for the current task, long-term memory for persistent knowledge, […]
Read more →Search Results for: title
Tool Use Patterns: Building LLM Agents That Can Take Action
Introduction: Tool use transforms LLMs from text generators into capable agents that can search the web, query databases, execute code, and interact with APIs. But implementing tool use well is tricky—models hallucinate tool calls, pass invalid arguments, and struggle with multi-step tool chains. The difference between a demo and production system lies in robust tool […]
Read more →Building AI Agents: A Complete Code Review Assistant from Scratch
Hands-on tutorial building a production-ready AI agent. Create a code review assistant with tool use, error handling, caching, and GitHub integration.
Read more →Hybrid Search Strategies: Combining Keyword and Semantic Search for Superior Retrieval
Introduction: Neither keyword search nor semantic search is perfect alone. Keyword search excels at exact matches and specific terms but misses semantic relationships. Semantic search understands meaning but can miss exact phrases and rare terms. Hybrid search combines both approaches, leveraging the strengths of each to deliver superior retrieval quality. This guide covers practical hybrid […]
Read more →Document Chunking Strategies: Optimizing RAG Retrieval Quality
Introduction: RAG systems live or die by their chunking strategy. Chunk too large and you waste context window space with irrelevant content. Chunk too small and you lose semantic coherence, making it hard for the LLM to understand context. The right chunking strategy depends on your document types, query patterns, and retrieval approach. This guide […]
Read more →Embedding Fine-Tuning: Training Custom Embeddings for Domain-Specific Retrieval
Introduction: Off-the-shelf embedding models work well for general text, but domain-specific applications often need better performance. Fine-tuning embeddings on your data can dramatically improve retrieval quality—turning a 70% recall into 90%+ for your specific use case. The key is creating high-quality training data that teaches the model what “similar” means in your domain. This guide […]
Read more →