LLM Evaluation: Metrics, Benchmarks, and A/B Testing

Introduction: Evaluating LLM outputs is challenging because there’s often no single “correct” answer. Traditional metrics like BLEU and ROUGE fall short for open-ended generation. This guide covers modern evaluation approaches: automated metrics for specific tasks, LLM-as-judge for quality assessment, human evaluation frameworks, A/B testing in production, and building comprehensive evaluation pipelines. These techniques help you […]

Read more →

LLM Cost Optimization: Reducing API Spend Without Sacrificing Quality

Introduction: LLM API costs can spiral quickly—a chatbot handling 10,000 daily users at $0.01 per conversation costs $3,000 monthly. Production systems need cost optimization without sacrificing quality. This guide covers practical strategies: semantic caching to avoid redundant calls, model routing to use cheaper models when possible, prompt compression to reduce token counts, and monitoring to […]

Read more →