LLM Observability Patterns: Tracing, Metrics, and Logging for Production AI Systems

Introduction: LLM applications are notoriously difficult to debug and monitor. Unlike traditional software where inputs and outputs are deterministic, LLMs produce variable outputs that can fail in subtle ways. Observability—the ability to understand system behavior from external outputs—is essential for production LLM systems. This guide covers practical observability patterns: distributed tracing for complex LLM chains, […]

Read more →