Category: Technology Engineering

Technology Engineering

Vector Embeddings Deep Dive: From Theory to Production Search Systems

Posted on 7 min read

Introduction: Vector embeddings are the foundation of modern AI applications—from semantic search to RAG systems to recommendation engines. They transform text, images, and other data into dense numerical representations that capture semantic meaning, enabling machines to understand similarity and relationships in ways that traditional keyword matching never could. This guide provides a deep dive into… Continue reading

LLM Batch Processing: Scaling AI Workloads from Hundreds to Millions

Posted on 9 min read

Introduction: Processing thousands or millions of items through LLMs requires different patterns than single-request applications. Naive sequential processing is too slow, while uncontrolled parallelism hits rate limits and wastes money on retries. This guide covers production batch processing patterns: chunking strategies, parallel execution with rate limiting, progress tracking, checkpoint/resume for long jobs, cost estimation, and… Continue reading

LLM Fine-Tuning: From Data Preparation to Production Deployment

Posted on 13 min read

Introduction: Fine-tuning adapts pre-trained language models to specific tasks, domains, or behaviors. While prompting works for many use cases, fine-tuning delivers better performance, lower latency, and reduced costs for specialized applications. This guide covers modern fine-tuning approaches: full fine-tuning for maximum customization, LoRA and QLoRA for efficient parameter updates, preparing high-quality training data, using OpenAI… Continue reading

Building Production AI Applications with .NET 8 and C# 12

Posted on 6 min read

When .NET 8 and C# 12 were released, I was skeptical. After 15 years building enterprise applications, I’d seen framework updates come and go. But this release changed everything for AI development. Let me show you how to build production AI applications with .NET 8 and C# 12—using actual C# code, not Python wrappers. Figure… Continue reading

LLM Output Formatting: JSON Mode, Pydantic Parsing, and Template-Based Outputs

Posted on 13 min read

Introduction: LLM outputs are inherently unstructured text, but applications need structured data—JSON objects, typed responses, specific formats. Getting reliable structured output requires careful prompt engineering, output parsing, validation, and error recovery. This guide covers practical output formatting techniques: JSON mode and structured outputs, Pydantic-based parsing, format enforcement with retries, template-based formatting, and strategies for handling… Continue reading

Building LLM Agents with Tools: From Simple Loops to Production Systems

Posted on 11 min read

Introduction: LLM agents extend language models beyond text generation into autonomous action. By connecting LLMs to tools—web search, code execution, APIs, databases—agents can gather information, perform calculations, and interact with external systems. This guide covers building tool-using agents from scratch: defining tools with schemas, implementing the reasoning loop, handling tool execution, managing conversation state, and… Continue reading

LLM Observability: Tracing, Metrics, and Logging for Production AI

Posted on 13 min read

Introduction: Observability is essential for production LLM applications—you need visibility into latency, token usage, costs, error rates, and output quality. Unlike traditional applications where you can rely on status codes and response times, LLM applications require tracking prompt versions, model behavior, and semantic quality metrics. This guide covers practical observability: distributed tracing for multi-step LLM… Continue reading

Text-to-SQL with LLMs: Building Natural Language Database Interfaces

Posted on 10 min read

Introduction: Natural language to SQL is one of the most practical LLM applications. Business users can query databases without knowing SQL, analysts can explore data faster, and developers can prototype queries quickly. But naive implementations fail spectacularly—generating invalid SQL, hallucinating table names, or producing queries that return wrong results. This guide covers building robust text-to-SQL… Continue reading

Knowledge Graphs with LLMs: Building Structured Knowledge from Text

Posted on 12 min read

Introduction: Knowledge graphs represent information as entities and relationships, enabling powerful reasoning and querying capabilities. LLMs excel at extracting structured knowledge from unstructured text—identifying entities, relationships, and attributes that can be stored in graph databases. This guide covers building knowledge graphs with LLMs: entity and relation extraction, graph schema design, populating Neo4j and other graph… Continue reading

Ollama: The Complete Guide to Running Open Source LLMs Locally

Posted on 6 min read

Introduction: Ollama has revolutionized how developers run large language models locally. With a simple command-line interface and seamless hardware acceleration, you can have Llama 3.2, Mistral, or CodeLlama running on your laptop in minutes—no cloud API keys, no usage costs, complete privacy. Built on llama.cpp, Ollama abstracts away the complexity of model quantization, memory management,… Continue reading

Showing 41-50 of 229 posts
per page