General Availability of Azure Database Services for MYSQL and PostgreSQL

It has been a while I have written something on my blog. I thought of getting started again with a good news that Microsoft Azure team has announced the general availability of Azure Database Services for MySQL and PostgreSQL. In my earlier posts, I have provided some oversight into Preview Availability of these services as […]

Read more →

Prompt Injection Defense: Securing LLM Applications Against Adversarial Inputs

Introduction: Prompt injection is one of the most significant security risks in LLM applications. Attackers craft inputs that manipulate the model into ignoring its instructions, leaking system prompts, or performing unauthorized actions. As LLMs become more integrated into production systems—handling sensitive data, executing code, or making API calls—the attack surface grows dramatically. This guide covers […]

Read more →

LLM Evaluation Metrics: Measuring Quality in Non-Deterministic Systems

Introduction: Evaluating LLM outputs is fundamentally different from traditional ML metrics. You can’t just compute accuracy when there’s no single correct answer, and human evaluation doesn’t scale. This guide covers the full spectrum of LLM evaluation: automated metrics like BLEU, ROUGE, and BERTScore for measuring similarity; semantic metrics that capture meaning beyond surface-level matching; LLM-as-judge […]

Read more →

Vector Database Optimization: Scaling Semantic Search to Millions of Embeddings

Introduction: Vector databases are the backbone of modern AI applications—powering semantic search, RAG systems, and recommendation engines. But as your vector collection grows from thousands to millions of embeddings, naive approaches break down. Query latency spikes, memory costs explode, and recall accuracy degrades. This guide covers practical optimization strategies: choosing the right index type for […]

Read more →

RAG Patterns: Advanced Retrieval Augmented Generation Strategies

Introduction: Retrieval Augmented Generation (RAG) has become the standard pattern for grounding LLM responses in factual, up-to-date information. But basic RAG—retrieve chunks, stuff into prompt, generate—often falls short in production. Queries get misunderstood, irrelevant chunks pollute context, and answers lack coherence. This guide covers advanced RAG patterns that address these challenges: query transformation to improve […]

Read more →

Embedding Dimensionality Reduction: Compressing Vectors Without Losing Semantics

Introduction: High-dimensional embeddings from models like OpenAI’s text-embedding-3-large (3072 dimensions) or Cohere’s embed-v3 (1024 dimensions) deliver excellent semantic understanding but come with costs: more storage, slower similarity computations, and higher memory usage. For many applications, you can reduce dimensions significantly while preserving most of the semantic information. This guide covers practical dimensionality reduction techniques: PCA […]

Read more →