Structured Output from LLMs: JSON Mode, Function Calling, and Pydantic Patterns (Part 1 of 2)

Introduction: Getting reliable, structured data from LLMs is one of the most practical challenges in building AI applications. Whether you’re extracting entities from text, generating API parameters, or building data pipelines, you need JSON that actually parses and validates against your schema. This guide covers the evolution of structured output techniques—from prompt engineering hacks to […]

Read more →

LLM Inference Optimization: Caching, Batching, and Smart Routing (Part 1 of 2)

Introduction: LLM inference can be slow and expensive, especially at scale. Optimizing inference is crucial for production applications where latency and cost directly impact user experience and business viability. This guide covers practical optimization techniques: semantic caching to avoid redundant API calls, request batching for throughput, streaming for perceived latency, model quantization for self-hosted models, […]

Read more →

LLM Chain Debugging: Tracing, Inspecting, and Fixing Multi-Step AI Workflows

Introduction: Debugging LLM chains is fundamentally different from debugging traditional software. When a chain fails, the problem could be in the prompt, the model’s interpretation, the output parsing, or any of the intermediate steps. The non-deterministic nature of LLMs means the same input can produce different outputs, making reproduction difficult. Effective chain debugging requires comprehensive […]

Read more →

LLM Response Streaming: Building Real-Time AI Experiences

Introduction: Streaming LLM responses transforms the user experience from waiting for complete responses to seeing text appear in real-time, dramatically improving perceived latency. Instead of staring at a loading spinner for 5-10 seconds, users see the first tokens within milliseconds and can start reading while generation continues. But implementing streaming properly involves more than just […]

Read more →

LLM Fallback Strategies: Building Reliable AI Applications (Part 2 of 2)

Introduction: LLM APIs fail. Rate limits hit, services go down, models return errors, and responses sometimes don’t meet quality thresholds. Building reliable AI applications requires robust fallback strategies that gracefully handle these failures without degrading user experience. A well-designed fallback system tries alternative models, implements retry logic with exponential backoff, caches successful responses, and provides […]

Read more →

LLM Routing and Model Selection: Optimizing Cost and Quality in Production

Introduction: Not every query needs GPT-4. Routing simple questions to cheaper, faster models while reserving expensive models for complex tasks can cut costs by 70% or more without sacrificing quality. Smart LLM routing is the difference between a $10,000/month AI bill and a $3,000 one. This guide covers implementing intelligent model selection: classifying query complexity, […]

Read more →