LLM Fine-tuning Fundamentals: When, Why, and How to Customize Language Models

Introduction: Fine-tuning transforms a general-purpose LLM into a specialized model for your specific use case. While prompt engineering works for many applications, fine-tuning offers advantages when you need consistent formatting, domain-specific knowledge, or reduced latency from shorter prompts. This guide covers practical fine-tuning: when to fine-tune versus prompt engineer, preparing training data, running fine-tuning jobs […]

Read more →